BWR/X VSBWR

Very Simple Boiling Water Reactor

Jon Ball Enabling Advanced Reactors for the Market March 2018

This presentation regarding the Very Simple BWR is intended for discussion purposes only and the information it contains is subject to change. Accordingly, the information and data contained herein are merely conceptual and indicative. They do not take into account customer specific requirements, commercial terms with the customer or suppliers, or regulatory requirements. No warranties or guarantees are expressed or implied as to the accuracy of the estimates or the viability of any actual potential project.

In the near term ... which SMR can offer all of these?

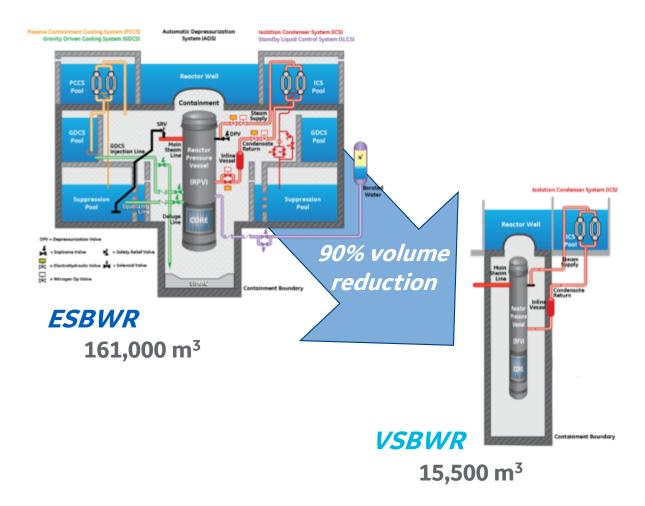
Gas-comparable LCOE

and lower capital cost

VSBWR design goals

W

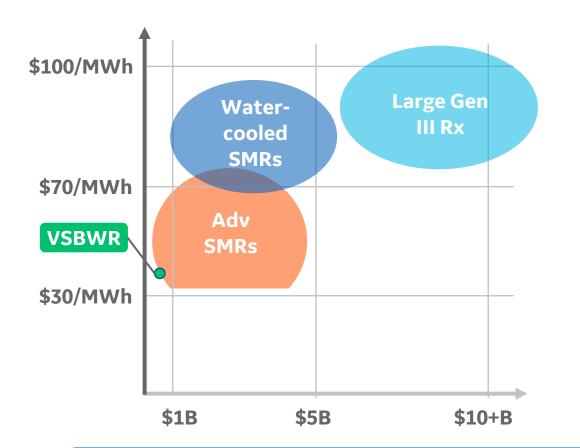
Reactor design, fuel design and passive safety


Simplicity

Simpler to manufacture, construct, operate and maintain

A dramatic reduction in scale and complexity vs ESBWR

VSBWR design principles


- •300 MW Small Modular BWR
- Designed to <u>eliminate LOCA</u>
- Design-to-cost' ... think like a startup
- ESBWR design/licensing basis
- Underground/concrete security
- Natural circulation
- Isolation Condenser System cooling
- •Small, dry containment
- Rethink control systems ... passive controls
- Design for 'off-the-shelf' TI/BOP
- Goal of 75 onsite staff

Compared to ESBWR:

>50% building volume reduction/MW >50% less concrete/MW

VSBWR ... Targeting competitiveness with gas near term

		LWR
Key Design Basis	ESBWR	Developed
Fuel	Same	Proven
Passive Safety	Passive w/o DC power	3-7 days
Emergency Planning Zone (EPZ)	Site boundary	10 mi.
Capital Cost	60+% reduction /kW	\$8+B
0&M	~75 staff <\$16/MWh	599-1,000 staff
Security	Limited	Large security force (Gen II style)
Licensing	Limited testing needed; Utilize ESBWR licensing basis	Complete
Detailed Design	~75% cost reduction	Complete
ВОР	Small and simplified; 'off the shelf	Custom, large components
Modularization	Simplified modularization	Complex

VSBWR

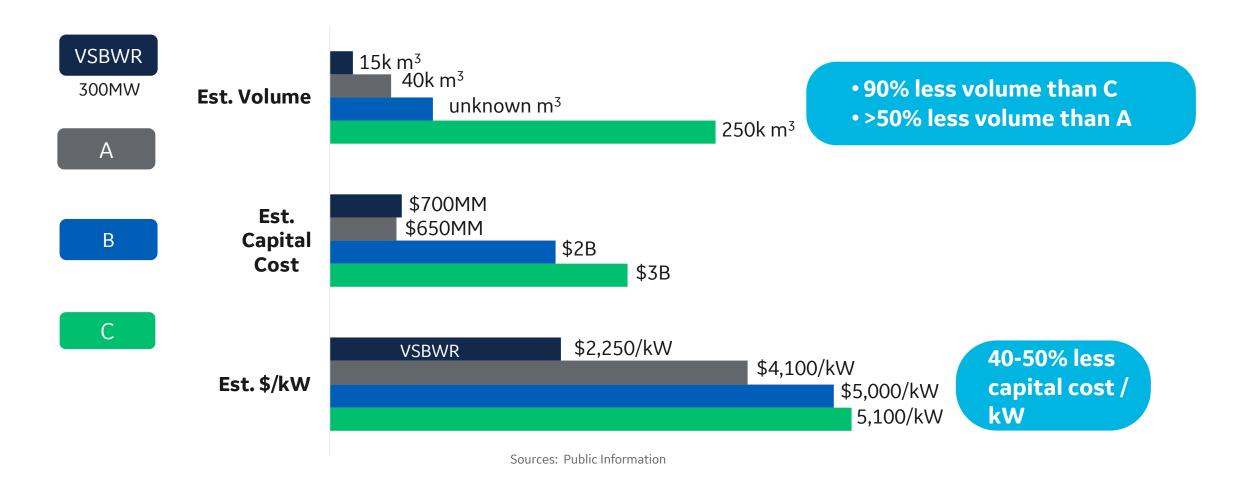
Passive-

safety large

Simpler ... Smarter ... Lower cost while utilizing ESBWR's 30+yr development basis

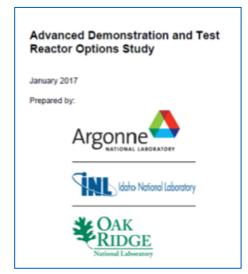
Simpler and more affordable to construct

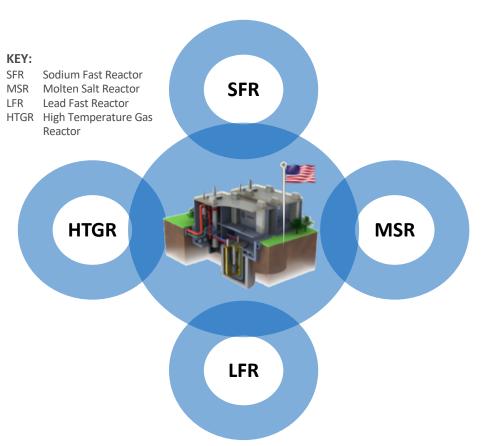
- DOLANON-CONJENSER


 BOLANON-CONJENSER

 FROM IND AVOIDS

 FROM IND AVOIDS
- Conventional blast/dig/pour ... ~\$4-6MM in 6-9m
- Common construction in other industries
- Earth provides natural protection from threats and lowers concrete volumes
- Power island ~ footprint of football field
- 900MWt size enables flexible water requirements ... e.g. dry-cooling towers


VSBWR compared to PWR SMRs



PRISM team ready for test reactor deployment

Nuclear systems design engineering

Operations and maintenance

Development lead and project management

BOP design engineering and construction

Licensing and technical support

The right technology and team to make progress benefitting all advanced reactors

